The latest trend in PXI is…boxes!

Image

Modules versus boxes has been a debate going on in ATE circles since the time of the mods and rockers. Modular PXI systems are fast, small, and offer increasing parametric performance. Traditional “box” instruments are easy to use, portable, and offer front panels and displays for manual bench operation. The two formats orbit around different value propositions. But the latest trend is the increasing use of PXI to create one-box testers and traditional bench instrumentation. In this column I talk with seven companies, and get their unique perspectives on this topic.  The companies are Agilent Technologies, LitePoint, Aeroflex, VTI Instruments, Marvin Test Solutions, National Instruments, and RADX Technologies.  Why are they doing this? What benefits to the user and vendor? What downsides? To find out, read the entire article here.

Apple enters engineering market, focus on test

Image

In a surprise announcement that has sent Apple watchers reeling, Apple has introduced several products aimed at the engineering market, with a specific focus on electronic test.

Apple Executive Vice President April Furst, also head of Apple’s new Apple Tech division, announced new hardware and software products at the San Francisco Moscone Center. After a live musical introduction from Thomas Dolby singing “She Blinded Me with Science”, Furst entered the stage to demonstrate the litany of new products to an excited audience.

To read more about the new Apple products including Mac Test, iGlass, iRule, and iPencil, read the entire news report here.

AXIe: It really is big brother to PXI

AXIe is the “big brother” of PXI.  It uses the same PCIe (PCI Express) fabric as PXI, but sports higher power and larger board size.  A goal of the consortium is to make AXIe appear to controllers and software as a PXI system, but focused on supporting high-end instrumentation.  Like PXI and VXI, it is open to all vendors, and uses similar software drivers, such as IVI and LabView, for instrument control.

So when Agilent contacted me a few days ago about an upcoming AXIe chassis announcement, I was interested to see these concepts delivered in what is arguably the highest performance open modular chassis yet created.  We’ll take a look at it.  But even more importantly, it demonstrates some key architectural concepts of AXIe, and some very interesting compatibility modes with PXI.

Do you know what an ASM is? An ESM? How about “fire breathing dragon”?  Read the entire article here.

Image

Increasing the speed of traditional box instruments

Frequent Test Cafe readers are familiar with the speed advantages of modular instruments.  But just to recap, modular standards such as PXI or AXIe gain their speed advantage in functional test applications by avoiding the ASCII interpretation bottleneck of traditional “box” instruments.  Recall that traditional instruments are typically programmed by SCPI commands, Standard Commands for Programmable Instruments.  These natural language commands take milliseconds to interpret, while driver execution is measured in microseconds.  I’ve seen PXI DMMs (digital multimeters) perform a complete measurement in 50 microseconds, including the command time.  A traditional LXI instrument wouldn’t have traversed the TCP/IP stack in order to send the first character in that time.  The bottom line is that SCPI is optimized for portability, not speed.  For top speed, you need pre-compiled high-speed drivers that manipulate an instrument’s native memory map directly over a low latency interface.  PCIe-based systems like PXI and AXIe do exactly that.

But are there ways around this bottleneck to make traditional box instruments competitive?  Yes- there are some tricks that users or manufacturers can employ to narrow the difference or even equalize the playing field.  Let’s review some here.

Image

 

Modular instrument highlights of 2013

So, where are we with modular instrument adoption in 2013?  It appears that modular systems have again outgrown traditional instruments by double-digit amounts.  Part of this is due to 2013 being a soft year for the industry overall, so this wasn’t a particular large hurdle.  However, the relative growth rate of modular instrumentation shows that PXI and AXIe continue to take share from their traditional counterparts.  

Why is this, and what are the sub-currents? Segment, drivers, acquisitions, architectures, I have it covered.  For the most integrated summary you will ever read of the 2013 modular instrument market, go here.

Image

 

National Instruments: The Quintessential Platform Play

There are as many ways to innovate as there are companies.  Products.  Services.  Cost.  Reach.  National Instruments is a quintessential platform innovation play.  While some companies find a market or a customer and optimize a product around that application, NI has chosen to invest in a few very flexible and very powerful architectures to address a wide range of applications.  In some ways it seems counter to the mantra of being “customer-focused”, as the platform is, by definition, “general purpose”.  Indeed, it is very difficult to design architectures that must compete against purpose-built products.  But if done right, it can reap huge rewards by creating a business model that turbocharges time to market and flexibility, enabling a company to address a broad set of applications efficiently.

All this is readily apparent to anyone who attended NI Week this past week in Austin, Texas.  You can read my entire report from NIWeek 2013 here.

You will also find there:

  • NI’s FlexRIO strategy as programmable FPGAs
  • New PXI and PXImc products
  • Applications in RF, mil/aero, and physics
  • PXI development card from Hiller Measurements
  • A link to my participation on an RF Panel

Again, the entire article is here.

AXIe Local Bus Architecture Delivers Unprecedented Bus Speeds

AXIe is commonly referred to as the “big brother” of PXI.  This is because it shares many of the features of PXI (open modular structure, PCI Express fabric, similar software) while deploying a large board size, power, and cooling matching that found in high performance instruments.  However, it also adds one very unique aspect: the AXIe local bus.  In this paper the authors describe the local bus, its capabilities, and recently announced products that demonstrate breakthrough system performance utilizing the local bus.  These capabilities include real time streaming and processing in excess of 40GB/s per link.

To read more about the AXIe local bus, its unique capabilities and applications, you can find the complete paper here

FPGAs Supercharge Instrument Flexibility

A growing number of instrument vendors are giving users the ability to customize internal FPGAs, delivering a significant increase in flexibility and speed.  While the automated test metaphor since the 1970s has been fixed-definition hardware instruments controlled through flexible programming, this recent trend now allows users to program the hardware definition of the instrument itself.  Who is doing this, and how?  What may this mean for the industry?  Many solutions in PXI and AXIe, but what about traditional boxes?  How are these programmed?  To find the most succinct summary written, follow the Masters of the FPGA Tour here